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Preface

Several years ago, we set out to write a short biochemistry 

textbook that combined succinct, clear chapters with extensive 

problem sets. We believed that students would benefi t from a 

modern approach involving broad but not overwhelming cov-

erage of biochemical facts, focusing on the chemistry behind 

biology, and providing students with practical knowledge and 

problem-solving opportunities. Our experience in the classroom 

continues to remind us that eff ective learning also requires stu-

dents to become as fully engaged with the material as possible. 

To that end, we have embraced a strategy of posing questions 

and suggesting study activities throughout each chapter, so that 

students will not simply read and memorize but will explore 

and discover on their own—a truer refl ection of how biochem-

ists approach their work in the laboratory or clinic. 

As always, we view our textbook as a guidebook for stu-

dents, providing a solid foundation in biochemistry, presenting 

complete, up-to-date information, and showing the practical 

aspects of biochemistry as it applies to human health, nutrition, 

and disease. We hope that students will develop a sense of 

familiarity and comfort as they encounter new material, explore 

it, and test their understanding through problem solving. 

New to This Edition 
Many details in the text and illustration program have been up-

dated, with virtually no section left untouched. Some signifi cant 

changes are worth mentioning: Chapter 3 includes an updated 

discussion of genomics and a completely new presentation of 

DNA sequencing technologies and the use of CRISPR-Cas to 

edit genes. Other new items include a discussion of archaeal 

lipids, details on the GLUT membrane transport protein, a box 

on exosomes, new illustrations of respiratory cilia and bac-

terial peptidoglycan, new molecular graphics of mitochon-

drial respiratory complexes, an updated presentation of the 

ribonucleotide reductase mechanism, and more information 

on the microbiome, cancer, and obesity. Descriptions of DNA 

replication and transcription have been extensively modifi ed, 

with numerous new diagrams to present a more realistic pic-

ture of these processes. The histone code and readers, writers, 

and erasers are explained. New details on RNA splicing and 

protein translocation round out the revised text.

Eight health-related topics that were previously confi ned 

to short boxes have been updated and expanded to Clinical 
Connection sections to give them the appropriate attention: 

2.5 Acid–Base Balance in Humans, 4.5 Protein Misfolding and 

Disease, 5.2 Hemoglobin Variants, 6.5 Blood Coagulation, 7.4 

Drug Development, 13.5 Disorders of Carbohydrate Metabo-

lism, 19.4 Cancer Metabolism, and 20.4 Cancer as a Genetic 

Disease.

With the same goal of making it easy for students to nav-

igate complex topics, some material within sections has been 

reorganized, and several new sections of text now focus on key 

content areas: 14.3 Thermodynamics of the Citric Acid Cycle, 

17.1 Lipid Transport, 18.5 Nucleotide Metabolism, 20.5 DNA 

Packaging, 21.1 Initiating Transcription, and 22.1 tRNA and 

the Genetic Code.

Above all, the focus of the fourth edition is ease of use, 

particularly for students and instructors taking advantage of 

new ways to assess student understanding. New Learning 
Objectives at the start of every section are based on verbs, 

giving students an indication of what they need to be able to 

do, not just know. Before You Go On study hints at end of each 

section reinforce the activities that support learning. The end-
of-chapter problem sets have been refreshed, with a total of 

1,624 problems (averaging 74 per chapter, an increase of 18% 

over the previous edition). Problems are grouped by section and 

off ered in pairs, with the answers to odd-numbered problems 

provided in an appendix.

Traditional Pedagogical 
Strengths 
•  “Do You Remember?” review questions start each chapter, 

to help students tie new topics to what they have already 

studied.

•  Figure Questions that accompany key tables and fi gures 

prompt students to inspect information more closely. 

•  Key sentences summarizing main points are printed in 

italics to assist with quick visual identifi cation. 

•  Tools and Techniques Sections appear at the end of 

Chapters 2, 3, and 4, to showcase practical aspects of 

biochemistry and provide an overview of experimental 

techniques that students will encounter in their reading or 

labo ratory experience. 

•  Metabolism overview fi gures introduced in Chapter 12 

and revisited in subsequent chapters help students place in-

dividual metabolic pathways into a broader context. 

•  Chapter Summaries, organized by major section headings, 

highlight important concepts to guide students to the most 

important points within each section. 

•  Key terms are in boldface. Their defi nitions are also in-

cluded in the Glossary. 

•  An annotated list of Selected Readings for each chapter in-

cludes recent short papers, mostly reviews, that students are 

likely to fi nd useful as sources of additional information. 

xi



xii PREFACE

phosphorylation (Chapter 15); the light and dark reactions of 

photosynthesis (Chapter 16); lipid catabolism and biosyn-

thesis (Chapter 17); and pathways involving nitrogen-containing 

compounds, including the synthesis and degradation of amino 

acids, the synthesis and degradation of nucleotides, and 

the nitrogen cycle (Chapter 18). The fi nal chapter of Part 2 

 explores the integration of mammalian metabolism, with 

extensive discussions of hormonal control of metabolic path-

ways, disorders of fuel metabolism, and cancer (Chapter 19). 

Part 4, the management of genetic information,  includes 

three chapters, covering DNA replication and repair 

(Chapter 20), transcription (Chapter 21), and protein 

 synthesis (Chapter 22). Because these topics are typically 

also covered in other courses, Chapters 20–22 emphasize the 

relevant biochemical details, such as topoisomerase  action, 

nucleosome structure, mechanisms of polymerases and 

other enzymes, structures of accessory proteins, proofread-

ing strategies, and chaperone-assisted protein folding. 

The WileyPLUS Advantage
WileyPLUS is a research-based online environment for eff ective 

teaching and learning. WileyPLUS is packed with interactive 

study tools and resources, including the complete online text-

book.

NEW Ten Guided Tours cover the major topics of the 

course. These multi-part tutorials explain biochemistry in time 

and space. Interactive questions at the end of each tour rein-

force learning.

NEW Assignable End-of-Chapter Questions, over 20 per 

chapter, can be assigned to students through WileyPLUS.

NEW Twenty-four Sample Calculation Videos walk 

students through each step of the sample calculations.

NEW Brief Bioinformatics Exercises crafted by Rakesh 

Mogul at California State Polytechnic University, Pomona, 

provide detailed instructions for novices to access and use 

bioinformatics databases and software tools. Each of the 57 

exercises includes multiple-choice questions to help students 

gauge their success in learning from these resources.

NEW Do You Remember Practice Quizzes help students 

prepare for new material by reinforcing relevant topics from 

previous chapters.

NEW Concept Check Questions for each section allow 

students to test their knowledge. 

NEW Discussion Questions are thought-provoking 

questions that serve as a point of departure for student discus-

sion and engagement with content.

NEW Twenty-three Animated Process Diagrams bring 

multi-step fi gures to life.

NEW ORION Biology and Chemistry Refresher of-

fers ORIONS’s diagnostics and adaptive practice for foun-

dational topics, to support Biochemistry students who come 

to the course with diff ering levels of background knowledge. 

UPDATED Bioinformatics Projects, written by Paul 

Craig at Rochester Institute of Technology, provide guidance 

Organization 
We have chosen to focus on aspects of biochemistry that tend 

to receive little coverage in other courses or present a chal-

lenge to many students. Thus, in this textbook, we devote pro-

portionately more space to topics such as acid–base chemistry, 

enzyme mechanisms, enzyme kinetics, oxidation–reduction 

reactions, oxidative phosphorylation, photosynthesis, and the 

enzymology of DNA replication, transcription, and transla-

tion. At the same time, we appreciate that students can become 

overwhelmed with information. To counteract this tendency, 

we have intentionally left out some details, particularly in the 

chapters on metabolic pathways, in order to emphasize some 

general themes, such as the stepwise nature of pathways, their 

evolution, and their regulation. 

The 22 chapters of Essential Biochemistry are relatively 

short, so that students can spend less time reading and more 

time extending their learning through active problem-solving. 

Most of the problems require some analysis rather than 

simple recall of facts. Many problems based on research data 

provide students a glimpse of the “real world” of science and 

medicine. 

Although each chapter of Essential Biochemistry,  Fourth 
Edition is designed to be self-contained so that it can be 

covered at any point in the syllabus, the 22 chapters are organ-

ized into four parts that span the major themes of biochemistry, 

including some chemistry background, structure–function re-

lationships, the transformation of matter and energy, and how 

genetic information is stored and made accessible. 

Part 1 of the textbook includes an introductory chapter and 

a chapter on water. Students with extensive exposure to chem-

istry can use this material for review. For students with little 

previous experience, these two chapters provide the chemistry 

background they will need to appreciate the molecular struc-

tures and metabolic reactions they will encounter later. 

Part 2 begins with a chapter on the genetic basis of mac-

romolecular structure and function (Chapter 3, From Genes 

to Proteins). This is followed by chapters on protein structure 

(Chapter 4) and protein function (Chapter 5), with coverage of 

myoglobin and hemoglobin, and cytoskeletal and motor pro-

teins. An explanation of how enzymes work (Chapter 6) pre-

cedes a discussion of enzyme kinetics (Chapter 7), an arrange-

ment that allows students to grasp the importance of enzymes 

and to focus on the chemistry of enzyme-catalyzed reactions 

before delving into the more quantitative aspects of enzyme 

kinetics. A chapter on lipid chemistry (Chapter 8, Lipids and 

Membranes) is followed by two chapters that discuss critical 

biological functions of membranes (Chapter 9, Membrane 

Transport, and Chapter 10, Signaling). The section ends with 

a chapter on carbohydrate chemistry (Chapter 11), completing 

the survey of molecular structure and function. 

Part 3 begins with an introduction to metabolism that 

provides an overview of fuel acquisition, storage, and mo-

bilization as well as the thermodynamics of metabolic reac-

tions (Chapter 12). This is followed, in traditional fashion, by 

chapters on glucose and glycogen metabolism (Chapter 13); the 

citric acid cycle (Chapter 14); electron transport and oxida tive 
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for 12 extended explorations of online databases, with ques-

tions, many open-ended, for students to learn on their own.

Additional Instructor Resources 
in WileyPLUS
•  PowerPoint Art Slides. 

•  Exercise Questions with immediate descriptive feedback 

updated for the fourth edition by Rachel Milner, University 

of Alberta;  Adrienne Wright, University of Alberta; and 

Mary Peek, Georgia Institute of Technology.

•  Test Bank Questions by Scott Lefl er, Arizona State University.

•  Practice and Pre-Lecture Questions by Steven Vik, South-

ern Methodist University, and Mary Peek, Georgia Institute 

of Technology.

•  PowerPoint Lecture Slides with Answer Slides by Mary 

Peek, Georgia Institute of Technology.

•  Personal Response System (“Clicker”) Questions by Gail 

Grabner, University of Texas at Austin, and Mary Peek, 

Georgia Institute of Technology.

We would like to thank everyone who helped develop Essential 
Biochemistry, Fourth Edition, including Biochemistry Editor Joan 

Kalkut, Product Designer Sean Hickey, Associate Development 

 Editor Laura Rama, Senior Production Editor Elizabeth Swain, 

Senior Designer Tom Nery, and Senior Photo Editor Billy Ray. 

We also thank all the reviewers who provided essential feedback on 

manuscript and media, corrected errors, and made valuable sugges-

tions for improvements that have been so important in the writing and 

development of Essential Biochemistry, Fourth Edition.
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CHAPTER 1
The Chemical Basis of Life

This fi rst chapter off ers a preview of the study of biochemistry, broken down into three sections 

that refl ect how topics in this book are organized. First come brief descriptions of the four 

major types of small biological molecules and their polymeric forms. Next is a summary of 

the thermodynamics that apply to metabolic reactions. Finally, there is a discussion of the 

origin of self-replicating life-forms and their evolution into modern cells. These short dis-

cussions introduce some of the key players and major themes of biochemistry and provide a 

foundation for the topics that will be encountered in subsequent chapters.

1.1  What Is Biochemistry?
Biochemistry is the scientifi c discipline that seeks to explain life at the molecular level. It uses 

the tools and terminology of chemistry to describe the various attributes of living organisms. 

Biochemistry off ers answers to such fundamental questions as “What are we made of?” and 

“How do we work?” Biochemistry is also a practical science: It generates powerful techniques 

that underlie advances in other fi elds, such as genetics, cell biology, and immunology; it off ers 

insights into the treatment of diseases such as cancer and diabetes; and it improves the effi  -

ciency of industries such as wastewater treatment, food production, and drug manufacturing.

Some aspects of biochemistry can be approached by studying individual molecules iso-

lated from cells. A thorough understanding of each molecule’s physical structure and chem-

ical reactivity helps lead to an understanding of how molecules cooperate and combine to 

form larger functional units and, ultimately, the intact organism (Fig. 1.1). But just as a clock 

completely disassembled no longer resembles a clock, information about a multitude of bio-

logical molecules does not necessarily reveal how an organism lives. Biochemists therefore 

investigate how organisms behave under diff erent conditions or when a particular molecule 

is modifi ed or absent. In addition, they collect vast amounts of information about molecular 

structures and functions—information that is stored and analyzed by computer, a fi eld of study 

known as bioinformatics. A biochemist’s laboratory is as likely to hold racks of test tubes as 

fl asks of bacteria or computers.

LEARNING OBJECTIVE

Recognize the main themes 
of biochemistry.

While no one has yet succeeded in reproducing all of a cell’s chemical reactions in a test tube, it is 

possible to identify and quantify the thousands of molecules present in a cell, such as this amoeba. 

Understanding the structures and functions of those molecules is key to understanding how cells live, 

move, grow, and reproduce.
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2 CHAPTER 1   The Chemical Basis of Life

Chapters 3 through 22 of this book are divided into three groups that roughly correspond 

to three major themes of biochemistry:

 1.  Living organisms are made of macromolecules. Some molecules are responsible for the 

physical shapes of cells. Others carry out various activities in the cell. (For convenience, 

we often use cell interchangeably with organism since the simplest living entity is a 

single cell.) In all cases, the structure of a molecule is intimately linked to its function. 

Understanding a molecule’s structural characteristics is therefore an important key to 

understanding its functional signifi cance.

 2.  Organisms acquire, transform, store, and use energy. The ability of a cell to carry out 

metabolic reactions—to synthesize its constituents and to move, grow, and reproduce—

requires the input of energy. A cell must extract this energy from the environment and 

spend it or store it in a manageable form.

 3.  Biological information is transmitted from generation to generation. Modern human 

beings look much like they did 100,000 years ago. Certain bacteria have persisted for 

millions, if not billions, of years. In all organisms, the genetic information that specifi es 

a cell’s structural composition and functional capacity must be safely maintained and 

transmitted each time the cell divides.

Several other themes run throughout biochemistry, and we will highlight these where 

appropriate.

 4.  Cells maintain a state of homeostasis. Even within its own lifetime, a cell may dramatically 

alter its shape or metabolic activities, but it does so within certain limits. And in order 

to remain in a steady, non-equilibrium state—homeostasis—the cell must recognize 

changing internal and external conditions and regulate its activities.

 5.  Organisms evolve. Over long periods of time, the genetic composition of a population 

of organisms changes. Examining the molecular makeup of living organisms allows 

biochemists to identify the genetic features that distinguish groups of organisms and to 

trace their evolutionary history.

 6.  Diseases can be explained at the biochemical level. Identifying the molecular defects that 

underlie human diseases, or investigating the pathways that allow one organism to infect 

another, is the fi rst step in diagnosing, treating, preventing, or curing a host of ailments.

Organism Organ Cell

Organelle

Molecules

DNA

Human

Ubiquinone

Citrate synthase

Citrate

Liver

Hepatocyte

Mitochondrion

FIGURE 1.1  Levels of 
organization in a living 
organism. Biochemistry focuses 

on the structures and functions of 

molecules. Interactions between 

molecules give rise to higher-order 

structures (for example, organelles), 

which may themselves be 

components of larger entities, 

leading ultimately to the entire 

organism. [Photodisc/Rubberball/

Getty Images]
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1.2  Biological Molecules
Even the simplest organisms contain a staggering number of diff erent molecules, yet this num-

ber represents only an infi nitesimal portion of all the molecules that are chemically possible. 

For one thing, only a small subset of the known elements are found in living systems (Fig. 1.2). 

The most abundant of these are C, N, O, and H, followed by Ca, P, K, S, Cl, Na, and Mg. 

Certain trace elements are also present in very small quantities.

Virtually all the molecules in a living organism contain carbon, so biochemistry can be 

considered to be a branch of organic chemistry. In addition, biological molecules are construc-

ted from H, N, O, P, and S. Most of these molecules belong to one of a few structural classes, 

which are described below.

Similarly, the chemical reactivity of biomolecules is limited relative to the reactivity of 
all chemical compounds. A few of the functional groups and intramolecular linkages that are 

common in biochemistry are listed in Table 1.1. Familiarity with these functional groups is 

essential for understanding the behavior of the diff erent types of biological molecules we will 

encounter throughout this book.

Cells contain four major types of biomolecules
Most of the cell’s small molecules can be divided into four classes. Although each class 

contains many members, they are united under a single structural or functional defi nition. 

Identifying a particular molecule’s class may help predict its chemical properties and possibly 

its role in the cell.

1. Amino Acids Among the simplest compounds are the amino acids, so named be-

cause they contain an amino group (NH2) and a carboxylic acid group (COOH). Under 

physiological conditions, these groups are actually ionized to NH3
+ and COO–. The com-

mon amino acid alanine—like other small molecules—can be depicted in diff erent ways, for 

example, by a structural formula, a ball-and-stick model, or a space-fi lling model (Fig. 1.3). 

Other amino acids resemble alanine in basic structure, but instead of a methyl group (CH3), 

they have another group—called a side chain or R group—that may also contain N, O, or S; 

for example,

H CH2

NH2

C
O

C

COO�

Asparagine

H CH2 SHC

COO�

Cysteine
NH3

� NH3
�

LEARNING OBJECTIVES

Identify the major classes of 
biological molecules.
•  List the elements found in 

biological molecules.

•  Draw and name the common 

functional groups in 

biological molecules.

•  Draw and name the common 

linkages in biological 

molecules.

•  Distinguish the main 

structural features of 

carbohydrates, amino acids, 

nucleotides, and lipids.

•  Identify the monomers and 

linkages in polysaccharides, 

polypeptides, and nucleic 

acids.

•  Summarize the biological 

functions of the major 

classes of biological 

molecules.

19
K

20
Ca

11
Na

12
Mg

23
V

24
Cr
42
Mo
74
W

25
Mn

26
Fe

27
Co

28
Ni

29
Cu

30
Zn
48
Cd

5
B
13
Al

6
C
14
Si

7
N
15
P

8
O
16
S

9
F
17
Cl

33
As

34
Se

35
Br
53
I

1
H

FIGURE 1.2  Elements found in biological systems. The most abundant elements are most darkly 

shaded; trace elements are most lightly shaded. Not every organism contains every trace element. 

Biological molecules primarily contain H, C, N, O, P, and S.
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TABLE 1.1  Common Functional Groups and Linkages in Biochemistry

COMPOUND NAME STRUCTURE a FUNCTIONAL GROUP

a 
R represents any carbon-containing group. In a molecule with more than one R group, the groups may be the same or diff erent.

b 
Under physiological conditions, these groups are ionized and hence bear a positive or negative charge.

Q Cover the Structure column and draw the structure for each compound listed on the left. Do the same for each functional group.

R

Amineb

Carboxylic acidb

(Carboxylate)

Imineb

Phosphoric acid
esterb

Diphosphoric acid
esterb

R NH or

Alcohol ROH

Ether

Ester

Amide

ROR

Aldehyde

Ketone

Tiol RSH

RNH2
R2NH 
R3N

C

O

H C

O

C

O

(carbonyl group), (acyl group)R C

O

(carbonyl group), (acyl group)R C

O

C O (ester linkage)

O

C (amido group)

O

(carboxylate group)

C OH (carboxyl group)    or 

O

C O�

O

R C

O

OR

R C

O

NH2

R C

O

NHR

R C

O

NR2

R C

O

OH   or

R C

O

O�

R C

O

R

or

N or (amino group)

N
H

N

C C (imino group)

(phosphoester linkage)

(phosphoanhydride linkage)

N or

or

or

�N

OH (hydroxyl group) 

(ether linkage)O

(sulfhydryl group)SH

RNH3
�or

�

R2NH2
�or

R3NH�or

R NH2
�

R

P

O

O

OH

O

(phosphoryl group, Pi)P

O

OH

OH

O

P

O

O�

O�

P

O

O

OH

P

O

O

OH

(diphosphoryl group, pyrophosphoryl group, PPi)

P

O

O

OH

P

O

OH

OH

P

O

O

O�

P

O

O�

O�

O P

O

OH

OH

R

O P

O

O�

O�

R

orO P

O

OH

O P OH

O

OH

R

O P

O

O�

O P O�

O

O�

R

NR or R NHR�
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2. Carbohydrates Simple carbohydrates (also called monosaccharides or just sug-

ars) have the formula (CH2O)n, where n is ≥ 3. Glucose, a monosaccharide with six carbon 

atoms, has the formula C6H12O6. It is sometimes convenient to draw it as a ladder-like chain 

(left); however, glucose forms a cyclic structure in solution (right):

Glucose

H

C

C
O

H C OH

H OH

H C

CH2OH

OH

HO C H O

H

H
HH

HO

H

OH

OH
OH

CH2OH

In the representation of the cyclic structure, the darker bonds project in front of the page 

and the lighter bonds project behind it. In many monosaccharides, one or more hydroxyl 

groups are replaced by other groups, but the ring structure and multiple OH groups of these 

molecules allow them to be easily recognized as carbohydrates.

3. Nucleotides A fi ve-carbon sugar, a nitrogen-containing ring, and one or more 

phosphate groups are the components of nucleotides. For example, adenosine triphosphate 

(ATP) contains the nitrogenous group adenine linked to the monosaccharide ribose, to which 

a triphosphate group is also attached:

O
�O

O O

H H

N N

NN

H Ribose

Triphosphate

H

NH2

CH2

O

PO�O
�O

O

P
�O

O

P

OH
Adenosine triphosphate (ATP)

OH

Adenine

In a structural formula, some
bonds, such as the C—O and
N—H bonds, are implied.
Around the central carbon, the
horizontal bonds extend
slightly above the plane of the
page, and the vertical bonds
extend slightly behind it.

(a)

H C

NH3
�

CH3

COO�

(b)
The atoms are color-coded by convention:
C gray, N blue, O red, and H white. A ball-
and-stick representation reveals the
identities of the atoms and their positions
in space.

(c)
In a space-filling model, each atom is
presented as a sphere whose radius
(the van der Waals radius)
corresponds to the distance of
closest approach by another atom.

FIGURE 1.3  Representations of alanine. The structural formula 

(a) indicates all the atoms and the major bonds. Because the central 

carbon atom has tetrahedral geometry, its four bonds do not lie fl at 

in the plane of the paper. This tetrahedral arrangement is more 

accurately depicted in the ball-and-stick model (b), although the 

relative sizes and electrical charges of atoms are not shown. A space-

fi lling model (c) best represents the actual shape of the molecule but 

may obscure some of its atoms and linkages.
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The most common nucleotides are mono-, di-, and triphosphates containing the nitrogenous 

ring compounds (or “bases”) adenine, cytosine, guanine, thymine, or uracil (abbreviated A, 

C, G, T, and U).

4. Lipids The fourth major group of biomolecules consists of the lipids. These compounds 

cannot be described by a single structural formula since they are a diverse collection of mole-

cules. However, they all tend to be poorly soluble in water because the bulk of their structure 

is hydrocarbon-like. For example, palmitic acid consists of a highly insoluble chain of 15 

carbons attached to a carboxylic acid group, which is ionized under physiological conditions. 

The anionic lipid is therefore called palmitate.

H3C
CH2

CH2

CH2

CH2

CH2

CH2

CH2

CH2

Palmitate

CH2

CH2

CH2

CH2

CH2

CH2

C O�

O

Cholesterol, although it diff ers signifi cantly in structure from palmitate, is also poorly soluble 

in water because of its hydrocarbon-like composition.

CH2

CH3 CH3

CH3

CH3

CH3
CH2 CH2 CHCH

HO
Cholesterol

Cells also contain a few other small molecules that cannot be easily classifi ed into the groups 

above or that are constructed from molecules belonging to more than one group.

There are three major kinds of biological polymers
In addition to small molecules consisting of relatively few atoms, organisms contain macro-

molecules that may consist of thousands of atoms. Such huge molecules are not synthesized 

in one piece but are built from smaller units. This is a universal feature of nature: A few kinds 
of building blocks can be combined in diff erent ways to produce a wide variety of larger 
structures. This is advantageous for a cell, which can get by with a limited array of raw mater-

ials. In addition, the very act of chemically linking individual units (monomers) into longer 

strings (polymers) is a way of encoding information (the sequence of the monomeric units) 

in a stable form. Biochemists use certain units of measure to describe both large and small 

molecules (Box 1.A).

Amino acids, monosaccharides, and nucleotides each form polymeric structures with 

widely varying properties. In most cases, the individual monomers become covalently linked 

in head-to-tail fashion:

Monomers Polymer

Residue
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The linkage between monomeric units is characteristic of each type of polymer. The monomers 

are called residues after they have been incorporated into the polymer. Strictly speaking, 

lipids do not form polymers, although they do tend to aggregate to form larger structures such 

as cell membranes.

1. Proteins Polymers of amino acids are called polypeptides or proteins. Twenty diff erent 

amino acids serve as building blocks for proteins, which may contain many hundreds of amino 

acid residues. The amino acid residues are linked to each other by amide bonds called peptide 
bonds. A peptide bond (arrow) links the two residues in a dipeptide (the side chains of the 

amino acids are represented by R1 and R2).

C

H

H3N
�

R1

C

O

C

H

N

R2

C

H O�

O

Because the side chains of the 20 amino acids have diff erent sizes, shapes, and chemical prop-

erties, the exact conformation (three-dimensional shape) of the polypeptide chain depends on 

its amino acid composition and sequence. For example, the small polypeptide endothelin, with 

21 residues, assumes a compact shape in which the polymer bends and folds to accommodate 

the functional groups of its amino acid residues (Fig. 1.4).

The 20 diff erent amino acids can be combined in almost any order and in almost any 

proportion to produce myriad polypeptides, all of which have unique three-dimensional 

shapes. This property makes proteins as a class the most structurally variable and therefore 

the most functionally versatile of all the biopolymers. Accordingly, proteins perform a wide 
variety of tasks in the cell, such as mediating chemical reactions and providing structural 
support.

2. Nucleic Acids Polymers of nucleotides are termed polynucleotides or nucleic acids, 
better known as DNA and RNA. Unlike polypeptides, with 20 diff erent amino acids available 

for polymerization, each nucleic acid is made from just four diff erent nucleotides. For exam-

ple, the residues in RNA contain the bases adenine, cytosine, guanine, and uracil, whereas the 

residues in DNA contain adenine, cytosine, guanine, and thymine. Polymerization involves 

the phosphate and sugar groups of the nucleotides, which become linked by phosphodiester 
bonds.

Biochemists follow certain conventions when quantifying objects 

on a molecular scale. For example, the mass of a molecule can be 

expressed in atomic mass units; however, the masses of biolog-

ical molecules—especially very large ones—are typically given 

without units. Here it is understood that the mass is expressed 

relative to one-twelfth the mass of an atom of the common car-

bon isotope 12C (12.011 atomic mass units). Occasionally, units of 

daltons (D) are used (1 dalton = 1 atomic mass unit), often with 

the prefi x kilo, k (kD). This is useful for macromolecules such as 

proteins, many of which have masses in the range from 20,000 

(20 kD) to over 1,000,000 (1000 kD).

The standard metric prefi xes are also necessary for expressing 

the minute concentrations of biomolecules in living cells. Con-

centrations are usually given as moles per liter (mol ⋅ L–1 or M), 

with the appropriate prefi x such as m, μ, or n:

mega (M) 106 nano (n) 10–9

kilo (k) 103 pico (p) 10–12

milli (m) 10–3 femto (f) 10–15

micro (μ) 10–6

For example, the concentration of the sugar glucose in human 

blood is about 5 mM, but many intracellular molecules are present 

at concentrations of μM or less.

Distances are customarily expressed in angstroms, Å (1 Å = 

10–10 m) or in nanometers, nm (1 nm = 10–9 m). For example, the 

distance between the centers of carbon atoms in a CC bond is 

about 1.5 Å, and the diameter of a DNA molecule is about 20 Å.

Q The diameter of a typical spherical bacterial cell is about 1 μm. 
What is the cell’s volume?

Box 1.A Units Used in Biochemistry

(a)

(b)

FIGURE 1.4  Structure of 
human endothelin. The 21 

amino acid residues of this 

polypeptide, shaded from blue to 

red, form a compact structure. In 

(a), each amino acid residue is 

represented by a sphere. The 

ball-and-stick model (b) shows all 

the atoms except hydrogen. 
[Structure (pdb 1EDN) determined by 

B. A. Wallace and R. W. Jones.]
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Base
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H H
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CH2 O

H H
HH

OH H

In part because nucleotides are much less variable in structure and chemistry than amino 

acids, nucleic acids tend to have more regular structures than proteins. This is in keeping with 
their primary role as carriers of genetic information, which is contained in their sequence 
of nucleotide residues rather than in their three-dimensional shape (Fig. 1.5). Nevertheless, 

many nucleic acids do bend and fold into compact globular shapes, as proteins do.

3. Polysaccharides Polysaccharides usually contain only one or a few diff erent types 

of monosaccharide residues, so even though a cell may synthesize dozens of diff erent kinds 

of monosaccharides, most of its polysaccharides are homogeneous polymers. This tends to 

limit their potential for carrying genetic information in the sequence of their residues (as nu-

cleic acids do) or for adopting a large variety of shapes and mediating chemical reactions (as 

proteins do). On the other hand, polysaccharides perform essential cell functions by serving 
as fuel-storage molecules and by providing structural support. For example, plants link the 

monosaccharide glucose, which is a fuel for virtually all cells, into the polysaccharide starch 

for long-term storage. The glucose residues are linked by glycosidic bonds (the bond is shown 

in red in this disaccharide):

H
H HH

H

OH

OH

O

OH

HO O H
H HH

H

OH

O
CH2OH CH2OH

OH

Glucose monomers are also the building blocks for cellulose, the extended polymer that helps 

make plant cell walls rigid (Fig. 1.6). The starch and cellulose polymers diff er in the arrange-

ment of the glycosidic bonds between glucose residues.

The brief descriptions of biological polymers given above are generalizations, meant to 

convey some appreciation for the possible structures and functions of these macromolecules. 

Exceptions to the generalizations abound. For example, some small polysaccharides encode 

information that allows cells bearing the molecules on their surfaces to recognize each other. 

Likewise, some nucleic acids perform structural roles, for example, by serving as scaff olding 

in ribosomes, the small particles where protein synthesis takes place. Under certain conditions, 

(a)

(b)

CGUACG

FIGURE 1.5  Structure of a 
nucleic acid. (a) Sequence of 

nucleotide residues, using 

one-letter abbreviations. 

(b) Ball-and-stick model of the 

polynucleotide, showing all atoms 

except hydrogen (this structure is 

a six-residue segment of RNA). 
[Structure (pdb ARF0108) determined 

by R. Biswas, S. N. Mitra, and M. 

Sundaralingam.]
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Glucose

Starch

Cellulose

FIGURE 1.6  Glucose and its polymers. Both starch and cellulose are polysaccharides containing 

glucose residues. They diff er in the type of chemical linkage between the monosaccharide units. Starch 

molecules have a loose helical conformation, whereas cellulose molecules are extended and relatively stiff .

TABLE 1.2  Functions of Biopolymers

BIOPOLYMER
ENCODE 

INFORMATION

CARRY OUT 
METABOLIC 
REACTIONS

STORE 
ENERGY

SUPPORT 
CELLULAR 

STRUCTURES

Proteins — ✔ ✓ ✔

Nucleic acids ✔ ✓ — ✓

Polysaccharides ✓ — ✔ ✔

✔ major function

✓ minor function

BEFORE GOING ON

•  List the six most abundant elements in biological molecules.

•  Name the common functional groups and linkages shown in Table 1.1.

•  Give the structural or functional defi nitions for amino acids, monosaccharides, 

nucleotides, and lipids.

•  Describe the advantage of building a polymer from monomers.

•  Give the structural defi nitions and major functions of proteins, polysaccharides, and 

nucleic acids.

•  Name the linkage in each type of polymer.

•  List the major functions of proteins, polysaccharides, and nucleic acids.

proteins are called on as fuel-storage molecules. A summary of the major and minor functions 

of proteins, polysaccharides, and nucleic acids is presented in Table 1.2.
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1.3  Energy and Metabolism
Assembling small molecules into polymeric macromolecules requires energy. And unless 

the monomeric units are readily available, a cell must synthesize the monomers, which also 

requires energy. In fact, cells require energy for all the functions of living, growing, and 
reproducing.

It is useful to describe the energy in biological systems using the terminology of thermody-

namics (the study of heat and power). An organism, like any chemical system, is subject to the 

laws of thermodynamics. According to the fi rst law of thermodynamics, energy cannot be cre-

ated or destroyed. However, it can be transformed. For example, the energy of a river fl owing 

over a dam can be harnessed as electricity, which can then be used to produce heat or perform 

mechanical work. Cells can be considered to be very small machines that use chemical energy 

to drive metabolic reactions, which may also produce heat or carry out mechanical work.

Enthalpy and entropy are components of free energy
The energy relevant to biochemical systems is called the Gibbs free energy (after the scien-

tist who defi ned it) or just free energy. It is abbreviated G and has units of joules per mol 

(J ⋅ mol1). Free energy has two components: enthalpy and entropy. Enthalpy (abbreviated 

H, with units of J ⋅ mol1) is taken to be equivalent to the heat content of the system. Entropy 
(abbreviated S, with units of J ⋅ K1 ⋅ mol1) is a measure of how the energy is dispersed within 
that system. Entropy can therefore be considered to be a measure of the system’s disorder or 

randomness, because the more ways a system’s components can be arranged, the more dis-

persed its energy. For example, consider a pool table at the start of a game when all 15 balls 

are arranged in one neat triangle (a state of high order or low entropy). After play has begun, 

the balls are scattered across the table, which is now in a state of disorder and high entropy 

(Fig. 1.7).

Free energy, enthalpy, and entropy are related by the equation

 G = H  TS [1.1]

where T represents temperature in Kelvin (equivalent to degrees Celsius plus 273). Tempera-

ture is a coeffi  cient of the entropy term because entropy varies with temperature; the entropy 

of a substance increases when it is warmed because more thermal energy has been dispersed 

LEARNING OBJECTIVES

Explain how enthalpy, 
entropy, and free energy 
apply to biological systems.
•  Defi ne enthalpy, entropy, 

and free energy.

•  Write the equation that links 

changes in enthalpy, 

entropy, and free energy.

•  Relate changes in enthalpy 

and entropy to the 

spontaneity of a process.

•  Describe the energy fl ow 

that makes living systems 

thermodynamically 

possible.

(a) (b)

FIGURE 1.7  Illustration of entropy. Entropy is a measure of the dispersal of energy in a system, so 

it refl ects the system’s randomness or disorder. (a) Entropy is low when all the balls are arranged in a 

single area of the pool table. (b) Entropy is high after the balls have been scattered, because there are 

now a large number of diff erent possible arrangements of the balls on the table.

Q Compare the entropy of a ball of yarn before and after a cat has played with it.
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within it. The enthalpy of a chemical system can be measured, although with some diffi  culty, 

but it is next to impossible to measure a system’s entropy because this would require counting 

all the possible arrangements of its components or all the ways its energy could be spread out 

among them. Therefore, it is more practical to deal with changes in these quantities (change is 

indicated by the Greek letter delta, ∆) so that

 ∆G = ∆H  T∆S [1.2]

Biochemists can measure how the free energy, enthalpy, and entropy of a system diff er before 

and after a chemical reaction. For example, exothermic reactions are accompanied by the 

release of heat to the surroundings (Hfi nal  Hinitial = ∆H < 0), whereas endothermic reactions
absorb heat from the surroundings (∆H > 0). Similarly, the entropy change, Sfi nal  Sinitial = ∆S, 

can be positive or negative. When ∆H and ∆S for a process are known, Equation 1.2 can be 

used to calculate the value of ∆G at a given temperature (see Sample Calculation 1.1).

SAMPLE CALCULATION 1.1

Problem
Use the information below to calculate the change in enthalpy and the change in entropy 

for the reaction A → B.

  Enthalpy (kJ · mol1) Entropy (J · K1 · mol1)
 A 60 22
 B 75 97

Solution
 ∆H = HB – HA ∆S = SB – SA

 = 75 kJ ⋅ mol–1 – 60 kJ ⋅ mol–1 = 97 J ⋅ K–1 ⋅ mol–1

 = 15 kJ ⋅ mol–1 – 22 J ⋅ K–1 ⋅ mol–1

 = 15,000 J ⋅ mol–1 = 75 J ⋅ K–1 ⋅ mol–1

SEE SAMPLE 
CALCULATION 
VIDEOS

∆G is less than zero for a spontaneous process
A china cup dropped from a great height will break, but the pieces will never reassemble 

themselves to restore the cup. The thermodynamic explanation is that the broken pieces have 

less free energy than the intact cup. In order for a process to occur, the overall change in free 
energy (∆G) must be negative. For a chemical reaction, this means that the free energy of the 

products must be less than the free energy of the reactants:

 ∆G = Gproducts – Greactants < 0 [1.3]

When ∆G is less than zero, the reaction is said to be spontaneous or exergonic. A nonspon-
taneous or endergonic reaction has a free energy change greater than zero; in this case, the 

reverse reaction is spontaneous.

 A → B B → A

 ∆G > 0 ∆G < 0

 Nonspontaneous Spontaneous

Note that thermodynamic spontaneity does not indicate how fast a reaction occurs, only whether 

it will occur as written. (The rate of a reaction depends on other factors, such as the concentra-

tions of the reacting molecules, the temperature, and the presence of a catalyst.) When a reac-

tion, such as A → B, is at equilibrium, the rate of the forward reaction is equal to the rate of the 

reverse reaction, so there is no net change in the system. In this situation, ∆G = 0.
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A quick examination of Equation 1.2 reveals that a reaction that occurs with a decrease 
in enthalpy and an increase in entropy is spontaneous at all temperatures because ∆G is 
always less than zero. These results are consistent with everyday experience. For example, 

heat moves spontaneously from a hot object to a cool object, and items that are neatly arranged 

tend to become disordered, never the other way around. (This is a manifestation of the second 

law of thermodynamics, which states that energy tends to spread out.) Accordingly, reactions 

in which the enthalpy increases and entropy decreases do not occur. If enthalpy and entropy 

both increase or both decrease during a reaction, the value of ∆G then depends on the temper-

ature, which governs whether the T∆S term of Equation 1.2 is greater than or less than the ∆H
term. This means that a large increase in entropy can off set an unfavorable (positive) change 

in enthalpy. Conversely, the release of a large amount of heat (∆H < 0) during a reaction can 

off set an unfavorable decrease in entropy (see Sample Calculation 1.2).

SEE SAMPLE 
CALCULATION 
VIDEOS

SAMPLE CALCULATION 1.2

Problem
Use the information given in Sample Calculation 1.1 to determine whether the reaction 

A → B is spontaneous at 25°C.

Solution
Substitute the values for ∆H and ∆S, calculated in Sample Calculation 1.1, into Equation 1.2. 

To express the temperature in Kelvin, add 273 to the temperature in degrees Celsius: 273 + 

25 = 298 K.

∆G = ∆H – T∆S
= 15,000 J ⋅ mol–1 – 298 K (75 J ⋅ K–1 ⋅ mol–1)

= 15,000 – 22,400 J ⋅ mol–1

= –7400 J ⋅ mol–1

= –7.4 kJ ⋅ mol–1

Because ∆G is less than zero, the reaction is spontaneous. Even though the change in 

enthalpy is unfavorable, the large increase in entropy makes ∆G favorable.

Life is thermodynamically possible
In order to exist, life must be thermodynamically spontaneous. Does this hold at the molecular 

level? When analyzed in a test tube (in vitro, literally “in glass”), many of a cell’s metabolic 

reactions have free energy changes that are less than zero, but some reactions do not. Never-

theless, the nonspontaneous reactions are able to proceed in vivo (in a living organism) because 

they occur in concert with other reactions that are thermodynamically favorable. Consider two 

reactions in vitro, one nonspontaneous (∆G > 0) and one spontaneous (∆G < 0):

A → B  ∆G = +15 kJ ⋅ mol1 (nonspontaneous)

B → C  ∆G = –20 kJ ⋅ mol1 (spontaneous)

When the reactions are combined, their ∆G values are added, so the overall process has a 

negative change in free energy:

 A + B → B + C  ∆G = (15 kJ ⋅ mol1) + (–20 kJ ⋅ mol1)

 A → C ∆G = –5 kJ ⋅ mol1

This phenomenon is shown graphically in Figure 1.8. In eff ect, the unfavorable “uphill” reac-

tion A → B is pulled along by the more favorable “downhill” reaction B → C.

Cells couple unfavorable metabolic processes with favorable ones so that the net change in 
free energy is negative. Note that it is permissible to add ∆G values because the free energy, G, 




